If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2y^2-26y+60=0
a = 2; b = -26; c = +60;
Δ = b2-4ac
Δ = -262-4·2·60
Δ = 196
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{196}=14$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-26)-14}{2*2}=\frac{12}{4} =3 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-26)+14}{2*2}=\frac{40}{4} =10 $
| 1(-7x-15)=-72 | | 5(-11x+4)=41 | | 4(3w-2)=8(2w+13) | | 2x²+3x-126=0 | | x^2+x=−9x−16 | | |2x-1|+|3x-5|=0 | | 4÷7n=20 | | 2(13x-13)=-58 | | S(x)=(40-2x)(30-2x) | | 36n-26n=136 | | 9x-18=8x+16 | | g+74=15 | | w²-7w-18=0 | | S(x)=(40-2x)(30-2x | | 5k-9=2k+12 | | t2+100=0 | | (30)=11.00+0.10x | | 6(x-7)=28 | | 10×4/5=x/5 | | 10×4/5=n/5 | | -10t²+25t+125=0 | | “4-5x=24 | | 8r=4/5 | | a2+6a-3=0 | | 2x-5=69 | | 10/9=g/3 | | (X+0.9)(x+1.9)=0 | | 2x+4=20-6 | | 14x=220-11x | | 14x=96.8 | | 9x=72$ | | x+40/36=3 |